
This document is for discussion purposes only, and not an Implementers Draft or Final Specification

FastFed	
Simplifying	the	adoption	of	Single-Sign-On	

Introduction	
SAML and OpenID Connect (OIDC) are two popular standards for Federated Single Sign-On.
While both are widely deployed, there remains significant friction in setting up new relationships
between identity and service providers. As a result of the friction, many service providers who
support federation are seeing low adoption of the feature. The vast majority of customers create
yet-another username/password.

FastFed is a proposed standard which seeks to reduce the onboarding friction for common uses
of federation. An ecosystem of “FastFed Compliant” identity and service providers will enable
end-users to instantiate new federation relationships with a few clicks, and without needing to
understand the underlying technologies. Importantly, FastFed will not change the pre-existing
standards, nor will it break existing implementations. Instead, it defines additional metadata,
APIs, and flows to make existing standards easier to adopt.

This document describes the current barriers to adoption for federation, how FastFed seeks to
eliminate them, and enumerates the major open questions to be addressed for FastFed to become
a reality.

Barriers	to	Adoption	of	Federation	

The barriers are best illustrated by describing the typical experience of an enterprise
administrator who is configuring single sign-on for a new SaaS application.

SAML and OpenID Connect are examined in sequence.

SAML	Experience	
SAML is a widely-adopted authentication protocol, especially for SSO to SaaS applications. A
typical ecosystem that leverages SAML might include an on-premises directory, such as
Microsoft AD or LDAP. Alongside this, an “identity provider” service is run which performs the
SAML communication exchanges. Two common implementations are Active Directory
Federation Server (ADFS) and Shibboleth. Many other providers exist in the marketplace.

To configure single sign-on to a new SaaS application, the administrator typically takes the
following actions:

• First, they sign-up for the SaaS app by visiting the provider’s website, creating an
account, and configuring any necessary settings (such as billing, or registering
namespaces).

• Next, the admin searches the service provider documentation for how to set up single-
sign-in. This typically leads them to a web form that asks for values. There is little
consistency in how these values are specified or labeled. Some applications want a
metadata file. Others ask for individual fields to be input one-by-one, such as “Entity

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

ID”, “Sign-In URLs”, and certificates. The administrators must search their own identity
provider’s documentation to find these values and manually copy and paste them over.
Someone unfamiliar with SAML will likely become confused and frustrated by the
unknown terminology.

• At this point, the administrator likely has 4 browser windows open: 2 showing
documentation from each party, and 2 for the various forms into which they are copying-
and-pasting values.

• Next, they must to do the same in the reverse direction, copying information about the
service provider that is needed by their identity provider. While the SAML spec defines a
standard metadata format for this exchange, few services provide it. Instead, admins
manually copy things like “ACS URL”, “Entity ID”, “Relay State”, and “Name ID
Format”. Instructions will give generic pointers such as “ACS URL should be the value
https://<your_domain.example-saas-app.com/tenant_id=?<your_tenant_id>. Please look
for this value in your service provider.”

• Some attributes aren’t provided by the service provider, such as name, description, and
logo. The admin must provide their own definitions and/or find an image to use. They
may have to manually resize and format the image to meet the requirements of their
identity provider.

• After this is done, the administrator must decide how to format the information about
their users in order to send it to the service. For example, “FirstName” and “LastName”
are commonly exchanged attributes, but the service provider might require the former to
be labeled as “FName” “GivenName”, “first-name”, or something else. The administrator
is responsible for defining any translations in order to publish their employee information
using the naming formats expected by the service provider.

• Finally, some applications require that users be “pre-provisioned” (i.e. preregistered) with
the service before they can log in. The administrator must determine how to execute this
provisioning. This might require the exchange of more user attributes and more custom
mappings. Sometimes, they need to implement systems to do this provisioning with all
the burden that entails, such as writing software scripts, managing software credentials,
and system monitoring.

Throughout this process, mistakes inevitably happen; steps are missed, typos occur. Often, the
documentation is unclear or misleading. As a result, the administrator experiences a frustrating
sequence of unexpected failures and confusing error messages. Debugging can require the user to
become an expert in Identity technologies and/or contact technical support. As a result, a typical
enterprise will budget 2 weeks for a new SAML integration.

Adding to the pain, the administrator will often discover that their configuration stops working
later when time-bound credentials and certificates expire. The parties have no long-lived
communication channel in order to automatically rotate credentials or publish updates to each
other. Instead, the administrator must manually rotate the credentials for each service, one-by-
one.

OpenID	Connect	(OIDC)	Examples	
OIDC is a newer authentication protocol, commonly seen by consumers via the “Login with
Facebook/Google/Amazon/Other” buttons that appear on websites and apps. These companies

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

vend toolkits for app developers to embed their SSO solutions. The result is a simple experience
for end-users to reuse their existing accounts on a wide range of applications.

OIDC has less adoption in the business-to-business and SaaS marketplace. (This is mainly due to
being a newcomer in a domain in which SAML was a well-entrenched solution.) As a result of
limited adoption, there are fewer examples of real OIDC friction to point to.

Nonetheless, if an administrator wishes to use OIDC for SaaS applications, they would likely
encounter many of the same issues currently experienced with SAML. For example:

• Relying parties must register with a provider to receive a clientID and clientSecret. While
the specs do define a programmatic registration procedure, few providers implement it,
and hence the registration is likely to require a human visit a UI and manually submit a
form. A human will be copying-and-pasting values between UIs, much like the SAML
experience.

• OIDC has a limited set of predefined user attributes, which it calls claims. These claims
include values that are common in the social networking ecosystem, such as Name and
Profile URL. But, it lacks extended user information needed for enterprises,
governments, or educational institutions. As a result, each application owner may define
their own extended attribute names. Much like the SAML experience, integration with
these applications would require a custom mapping of attribute names between what the
provider vends, and what the service expects.

How	FastFed	Seeks	to	Minimize	the	Barriers	

A rational eye could look at the barriers to adoption and see that a significant contributor is that
existing standards are not leveraged. For example, SAML defines a metadata file format, but not
all parties use them. OIDC defines a dynamic registration flow, but few providers implement it.
And, while there are plenty of existing schemas for modeling user attributes, many service
providers choose to ignore them and define their own attribute names.

At the cynical extreme, one could perceive FastFed as taking the perspective that “Nobody is
fully leveraging the existing standards, so let’s create a new standard that instructs people to
use the existing standards.”

To address that concern, it is worthwhile to enumerate what FastFed brings to the table and how
it addresses the problems.

• First, the specification will define the term “FastFed Compliant”. While these are only
words, having a common vocabulary can be a powerful driver of change. It is a shorthand
reference to a desirable user experience. Technology providers who enable this
experience can promote themselves as compliant. Others who neglect this experience can
be called out for incompliance.

• Next, it will define the portions of existing specifications which must be implemented to
be “FastFed Compliant”. For example, the SAML spec is large and much of the

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

functionality is not necessary for Single-Sign-On use cases. FastFed will help
implementers zoom into the portions that are relevant to them.

• In places where existing specifications are insufficient, FastFed will fill in the blanks. It
will do this with a minimal amount of additional metadata. Some of the extensions
include:

o Specifying which protocols are supported (e.g. OIDC, SAML , or both)
o Declaring which user attributes are supported, and how to map those attributes

into the SAML/OIDC protocols.
• Finally, FastFed will define the user experience flows and any new APIs necessary to

achieve them. Some of the issues addressed by these flows include:
o OIDC Dynamic Registration can require an Initial Access Token. The OIDC spec

does not define how to generate this token and share it with the RP. FastFed
defines this exchange.

o In multi-tenant systems, the configuration files (such as SAML Metadata and
OIDC Discovery Docs) may be custom-generated for each tenant, rather than
being a static file in a well-known location. FastFed will specify how parties find
and share these configuration files.

User	Experience	
Because FastFed is predicated on providing a better user experience, it is helpful to clarify this
experience.

The following example illustrates a potential FastFed flow for an enterprise administrator who is
enabling SSO to a 3rd party SaaS application.

An example implementation of the FastFed flow begins with the administrator visiting a UI
provided by their identity provider. With FastFed, only one piece of information is needed from
the administrator: the FastFed URL for the new application.

Next, the admin is redirected to the service provider.

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

The service provider may ask a few questions about sign-on preferences (not shown). This is at
the discretion of the service provider. When the service provider is finished, the administrator is
redirected back home.

After completing the registration, the configuration is complete. Users can sign-in.

Most identity providers are likely to include an additional screen to ask who should be permitted
to sign-in to the application. This is outside the scope of the FastFed spec.

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

As an additional exemplary implementation of the FastFed flow, the registration experience can
also be initiated from the Service Provider. This is simply another entry point into the same flow
described above.

	

Key	Concepts	
To deliver the customer experience, FastFed has a few needs. Understanding these needs can
illuminate why certain activities occur within the specification.

Common	Language	for	User	Attributes	
Today, there is no shared agreement on how to represent user attributes across various SSO
implementations. The lack of consistency results in each integration being a “one-off” where
someone must define a mapping between what the identity provider vends and what the service
expects.

To remove this friction, FastFed requires a lingua franca for user attributes. SCIM is the chosen
language.

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

Throughout the specification, all parties communicate their needs for user attributes in the form
of SCIM schema references. Any transformations to/from alternative formats are specified as
transformations to/from SCIM.
	
Credential	Exchange	
One of the key needs of FastFed is that the identity provider and service provider be able to
communicate with one another, programmatically. Communication occurs for several purposes.
It allows the exchange of registration materials, the ongoing rotation of keys, and the
provisioning of users. Because many of these communications involve private information, there
must be a mechanism to demonstrate that the end-user has approved access to the information.

FastFed uses OAuth 2.0 access_tokens and refresh_tokens for this purpose. The specification
describes how these tokens are distributed to each party.

FastFed	Configuration	Files	
Both parties need to understand the capabilities of the other in order to establish a working
relationship, such as whether to use SAML or OIDC.

The establishment of this relationship occurs in a process named the FastFed handshake. The
handshake relies on the exchange of configuration information.

To enable this communication, FastFed defines a standard configuration file format. However,
rather than a single file, FastFed divides the configuration into two parts: a public file and a
private file. The split arises because some multi-tenant services will generate different SSO
configurations for each tenant. In addition, multi-tenant services often have privacy requirements
that preclude exposing tenant information without approval.

To meet these goals, the private file (“FastFed Metadata”) allows the vending of unique, access-
controlled configuration for each tenant. The public file (“FastFed Discovery”) allows the
handshake to bootstrap so that each party can acquire permissions to the private files.

Security	
TBD
Note – a threat model is still todo. It is expected that the specification will evolve to address
the threats. Mitigations may be worth explaining here if they are non-intuitive.

Detailed	Flows	
With the foundations in place, we are ready for details. This section steps through the FastFed
registration process and describes the detailed activities at each step.

Note on terminology:

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

FastFed spans multiple standards. A single actor could be referred to as the “SAML Service
Provider”, the ”OpenID Connect Relying Party”, or the “SCIM Server”. To minimize verbosity,
this document uses the SAML vocabulary:

• Identity	Provider	(IdP)-		the	authoritative	user	directory	
• Service	Provider	(SP)	–	the	application	provider	

When applied to non-SAML specifications, the appropriate translations apply. (TODO – OK for
a strawman document, but need to nail down the real vocabulary before drafting the
specification.)

(Step	1)	Publication	of	Discovery	Configuration	
FastFed begins with the publication of “Discovery” configuration files. Both parties host their
configuration at a publicly accessible URL. The configuration contains a minimal amount of
information necessary to bootstrap the registration handshake.

Example:

GET /.well-known/fastfed-discovery HTTP/1.1
Host: example.com

HTTP/1.1 200 OK
Content-Type: application/json

{
 “identity_provider”:
 {“handshake_endpoint”: “https://idp.example.com/fastfed/handshake/start”},

 “service_provider”:
 {“handshake_endpoint”: “https://sp.example.com/fastfed/handshake/receive”,
 “auth_protocols_supported”: [“OIDC”,”SAML”]}
}

The Discovery configuration can contain a block for “identity_provider”, “service_provider”, or
both, depending on what role(s) the entity plays. A system which acts solely as an IdP, for
example, would only include the “identity_provider” block. A system which supports both
capabilities would include both blocks.

The configuration includes a “handshake_endpoint”, which is the location where the user_agent
should be directed in order to perform the FastFed registration handshake.

In addition, service providers declare the supported authentication protocols. The IdP will
examine the list and decide which method(s) to use. The decision is purely at the discretion of
the IdP and can be based on the customer preferences, the capabilities of the IdP, or any other
factor. The IdPs chosen protocol will be expressed in the private files (later).

(Open Question – Should the Discovery configuration also include the application name,
logo URL, and other displayable information?)

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

(Step	2)	IdP	Allows	Administrator	to	Start	Process	
The administrator chooses an application and initiates the registration process.
This could be done by a UI and the contents of the UI are at the discretion of the identity
provider and outside the scope of the FastFed specification. In the most basic implementation, an
end-user manually enters a URL, such as “https://example.com/.well-known/fastfed” or simply
“https://example.com/” when using the “.well-known” location.

The IdP is responsible for authenticating the end-user and ensuring they are authorized to register
new applications. This is outside the scope of the specification.

(Step	3)	IdP	Creates	a	Confirmation	
The next step is to confirm the user wishes to proceed with the registration. The contents are at
the discretion of the identity provider and outside the scope of the FastFed specification. Since
the FastFed handshake may result in private information being exposed to the service provider,
this page may include notifications, or terms and conditions, that are applicable to the situation.
Alternatively, a provider may choose to display nothing and immediately redirect the user to the
next step.

The confirmation step is initiated by making an HTTP POST to the IdPs handshake endpoint and
passing the SP’s FastFed Discovery URL. (Open Question – Need to nail down the semantics
of whether this is a GET or POST…)

Example:
POST /fastfed/idp/handshake/start
Content-Type: application/x-www-form-urlencoded
Content-Length: 50
Host: idp.example.com

sp= https%3A%2F%2Fsp.example.com%2F.well-known%2Ffastfed

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

(Step	4)	IdP	generates	tenant-specific	information	
Upon receiving confirmation from the user to initiate the registration, the identity provider
performs a number of actions behind the scenes. These actions include the following:

• Download the Service Provider’s FastFed Discovery file and extract the following
values:

o Supported Authentication Protocols (e.g. SAML, OIDC)
o Handshake URL

• Validate the Service Provider. At minimum, this requires validating that the IdP is
compatible with the authentication protocols offered by the SP. E.g. if one party supports
SAML, and the other only supports OIDC, the registration cannot proceed. The IdP may
perform additional validation beyond this, such as ensuring the application is part of a
whitelisted collection of trusted apps. This is outside the scope of FastFed.

• Examine the Supported Authentication Protocols to determine which to use. If the SP
supports multiple protocols, choose one.

• Create an initial_access_token and nonce that will be given to the SP. These values will
allow the SP to call an OAuth endpoint and attain an access_tokens and refresh_tokens,
so they can interact with the IdP programmatically.

• Generate a ReturnTo URL. This tells the service provider how to redirect the user back to
the identity provider to finish the registration handshake.

• (Optional) Generate a state attribute which encodes any state that the identity provider
wishes to preserve across the handshake. This will be passed to the service provider and
echoed back to the ReturnTo URL.

• Generate (or otherwise make available) a private FastFed Metadata file to share with the
SP. Access to the file can be restricted to holders of the initial_access_token. The file
contains the following information:

o Name (Required)
§ A displayable name for the Identity Provider (Open Question – limits on

name length?)
o Logo URI (Optional)

§ A logo that represents the Identity Provider (Open Question – limits on
size & image format?)

o Auth Protocols (Required, at least one)

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

§ Describes whether the IdP will use SAML, OIDC, or both.
o SAML Metadata URI (Required if the AuthProtocols include SAML)

§ A URL for a standard SAML Metadata document containing an
IDPSSODescriptor. Access to this file may require the access_token.

o OIDC Configuraiton URI (Required if the AuthProtocols include OIDC)
§ A URL for a standard OpenID Provider configuration document. Access

to this file may require the access_token.
o OAuth Token Endpoint (Required)

§ A URL for a standard OAuth token exchange using the refresh_token.
o SCIM Endpoint (Required)

§ A URL for standard SCIM operations exposed by identity providers, such
as fetching a User by Id. This endpoint may not be usable by the service
provider until after the handshake completes.

o Supported Attributes (Required)
§ Describes the collection of SCIM user attributes that the IdP can make

available (presuming the administrator approves their release to the
service provider). These are expressed as a collection of SCIM attribute
names. (Open Question – any prior implementations here? Closest
example was OIDC claims_supported, but SCIM needs a richer
expressiveness.)

At the end of this process, the IdP is capable of giving access to a configuration file, for example,
like this:

GET /fastfed/metadata HTTP/1.1
Host: tenant12345.example.com
Authorization: Bearer kdDS42K12ojk

HTTP/1.1 200 OK
Content-Type: application/json

{
 “identity_provider”: {
 “name”: “Awesome IdP”
 “logo_uri”: “https://example.com/images/idp_logo.png”,
 “auth_protocols”: [“SAML”,”OIDC”], #In practice, only 1 protocol typically
chosen.
 “saml_metadata_uri”: “https://tenant12345.example.com/saml-metadata.xml”,
 “oidc_configuration_uri”: “https://tenant12345.example.com/oidc-configuration”,
 “token_endpoint”: “https://tenant12345.example.com/token”,
 “scim_endpoint”: “https://tenant12345.example.com/scim”,
 “supported_attributes”: {
 "schemas": ["urn:ietf:params:scim:schemas:core:2.0:User",
 "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User"],
 "id",
 "userName",
 "name": {
 "familyName",
 "givenName",
 },
 "displayName",
 "emails",
 "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
 "employeeNumber",
 "costCenter",

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

 "manager": {
 "value"
 }
 }
 }
}

(Step	5)	IdP	redirects	the	user	to	the	SP	
At this point, the IdP has initialized the registration and is ready to redirect the user to the SP to
execute a similar sequence of steps. This redirection is accomplished by issuing an HTTP 302 to
the location that the SP has specified in the FastFed Discovery File.

Example:
HTTP/1.1 302 Found
Location: https://sp.example.com/fastfed/handshake/receive?
 initial_access_token=kj2kj3ujwlkdnl
 &nonce=bpqo1op4u4pjoe
 &fastfed_metadata_uri=https%3A%2F%2Ftenant12345.example.com%2Ffastfed%2Fmetadata
 &return_to=https%3A%2F%2Fidp.example.com%2Ffastfed%2Fhandshake%2Ffinish
 &state=vk2j35ijlkt2j2oij3ti2jtkltkl2n4kl2n

(Step	6)	SP	registers	the	relationship	
The service provider receives the request and begins its registration process.

When the service provider has finished any custom configuration, which are outside the scope of
the FastFed specification, it then performs the following FastFed actions behind the scenes:

• Download the Identity Provider’s FastFed Metadata and extract the attributes from it,
using the intial_access_token to access the file.

• Examine the metadata to ensure compatibility. This may include examining the
authentication protocols, the supported attributes, and specific details within the
SAML/OIDC configuration files. If incompatibilities exist, the service provider stops and
displays an error message.

• Uses the OAuth endpoint from the Metadata to convert the intial_access_token + nonce
into an access_token + refresh_token. These will be used for future communications
where the SP must initiate communication with the IdP. (Open Question: This is an
unorthodox OAuth flow. Doesn’t match any existing grant type. Is there a better
approach? Needs a deep security review.)

• Generate a corresponding initial_access_token and nonce that will be given to the IdP.
This will allow the IdP to complete its side of the handshake later.

• If using OIDC, perform OIDC Dynamic Registration with the IdP as per the standard
OIDC specifications. The registration endpoint can be discovered via the oidc-
configuration provided within the IdP’s FastFed metadata. (Note – To be FastFed
compliant, IdPs must support dynamic registration if they support OIDC).

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

• Generate (or otherwise make available) the service provider’s FastFed metadata to share
with the IdP. Access to the file can be restricted to holders of the initial_access_token.
The file contains the following information:

o Name (Required)
§ A displayable name for the Service Provider (Open Question – limits on

name length?)
o Logo URI (Optional)

§ A logo that represents the Service Provider (Open Question – limits on
size & image format?)

o Auth Protocols (Required, at least one)
§ Describes whether the SP will support SAML, OIDC, or both for the given

identity provider.
o SAML Metadata URI (Required if the AuthProtocols include SAML)

§ A URL for a standard SAML Metadata document containing an
SPSSODescriptor. Access to this file may require the access_token.

o OAuth Token Endpoint (Required)
§ A URL for a standard OAuth token exchange using the refresh_token.

o SCIM Endpoint (Required)
§ A URL for standard SCIM operations exposed by service providers, such

as those necessary for user provisioning.
o Provisioning Mode (Required)

§ Describes how the IdP should provision users into the service. Options
include: None, JIT, Preprovision…(Open Question: what are the right
values here?)

o Desired Attributes (Required)
§ Describes which user attributes the SP would like to receive from the IdP,

and whether they are essential or optional.
o Attribute Mapping (Optional)

§ Describes how to map SCIM attributes into SAML Attributes or OIDC
Claims. This mapping can be necessary to maintain compatibility with
existing infrastructure.

At the end of this process, the SP is capable of giving access to a configuration file like this:

GET /fastfed/metatdata HTTP/1.1
Host: tenant56789.example.com
Authorization: Bearer Pk39smWk2L9s6

HTTP/1.1 200 OK
Content-Type: application/json

{
 “service_provider”: {
 “name”: “Awesome Service (Tenant 56789)”
 “logo_uri”: “https://example.com/images/sp_logo.png”,
 “auth_protocols”: [“SAML”,”OIDC”],
 “saml_metadata_uri”: “https://tenant56789.example.com/saml-metadata.xml”,
 “token_endpoint”: “https://tenant56789.example.com/token”,
 “scim_endpoint”: “https://tenant56789.example.com/scim”,

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

 “provisioning_mode”: “None”,
 “desired_attributes”: {
 "schemas": ["urn:ietf:params:scim:schemas:core:2.0:User"],
 "userName": {"essential": true}
 "name": {
 "formatted”: null
 },
 "emails[primary == true]”: {
 value: {"essential": true}
 }
 },
 “saml_attribute_map”: {
 “name_id”: {
 “format”: “urn:oasis:names:tc:SAML:2.0:nameid-format:persistent”,
 “value”: “{$user.userName}”,
 },
 “attributes”: [
 {“name”: “name”,
 “format”: “urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified”,
 “value”: “{$user.name.formatted}”
 },
 {“name”: “email”,
 “format”: “urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified”,
 “value”: “{$user.email[primary == true].value}”
 }
]
 }
 “oidc_claim_map”: {
 “sub”: “{$user.userName}”,
 “name”: “{$user.name.formatted}”,
 “email”: “{$user.email[primary == true].value}”
 }
 }
}

(Step	7)	SP	redirects	the	user	back	to	the	IdP	
The last remaining step is to redirect the end-user back to the IdP.

The redirection is accomplished by issuing an HTTP 302 to the location originally provided by
the IdP in the return_to URL. As part of the return parameters, the SP provides access tokens
and the location of the SP’s FastFed Metadata. It also echoes back the state originally provided
by the IdP.

Example:
HTTP/1.1 302 Found
Location: https://ipd.example.com/fastfed/handshake/finish?
 initial_access_token=po23opm2d90S3K3q
 &nonce=9K2j3oH83jwi39Nc
 &fastfed_metadata_uri=https%3A%2F%2Ftenant56789.example.com%2Ffastfed%2Fmetadata
 &state=vk2j35ijlkt2j2oij3ti2jtkltkl2n4kl2n

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

(Step	8)	IdP	completes	the	registration	
The identity provider uses the information provided by the SP to complete the registration. This
involves the following steps:

• Download the Service Provider’s FastFed Metadata, using the initial_access_token to
access the file.

• Uses the OAuth endpoint from the Metadata to convert the intial_access_token + nonce
into an access_token + refresh_token. These will be used for future communications
where the IdP must initiate communication to the SP. (Open Issue: This is the same
unorthodox OAuth flow as in Step 6.)

• Finalize the registration and “turn-on” SSO to the service provider for end-users. The
mechanisms of doing this are specific to each IdP, but will typically involve persisting
the SSO information into some form of database, granting permissions, and scheduling
recurring activities, such as key rotations.

SP-Initiated	Registration	
The previous flows described an IdP-initiated registration. The same flow can be initiated from
the service provider.

To start this flow, as an example, the SP allows the end-user to choose an existing IdP, or
provides the FastFed URL for a custom provider.

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

Upon submission, the SP loads the FastFed Discovery configuration from the specified URL.

GET /fastfed HTTP/1.1
Host: example.com

HTTP/1.1 200 OK
Content-Type: application/json

{
 “identity_provider”:
 {“handshake_endpoint”: “https://idp.example.com/fastfed/handshake/start”}
}

It extracts the handshake endpoint from the configuration and sends the user to “Step #3” in the
previously described flow by redirecting them to the handshake endpoint, including the SP’s
Discovery URL as a parameter.

Example:
HTTP/1.1 302 Found
Location: https://ipd.example.com/fastfed/handshake/start?
 sp=https%3A%2F%2Fsp.example.com%2F.well-known%2Ffastfed

From this point, the registration flow proceeds as previously described.

Post-Registration	Activities	
After registration is complete, there remain ongoing activities as part of the SSO relationship,
including::

Sign-In	
When an end-user signs in to an application, the normal SAML/OIDC flows occur. However, the
IdP must apply any FastFed attribute mappings defined by the SP when performing these flows.
(See Open Issues at end of document for discussion on whether attribute mappings are
needed.)

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

User	Provisioning	
Some applications require ongoing user provisioning. Such applications declare the
provisioning_mode in their FastFed Metadata and, if necessary, provide a SCIM endpoint for
provisioning. The IdPs must respect and execute the declared provisioning mode.

Key	Rotation	
Both SAML and OIDC rely on key materials. All key materials must be rotated.(Open Question
– Is this enforceable? Should FastFed recommend best practices for key rotation?) .

Open	Issues	
Throughout this document, a number of questions and issues were highlighted. This section
consolidates the issues and can serve as a reference point for discussions.
	
(Issue	#1)	Names,	Names,	Names	
Every design requires the obligatory hand-wringing over terminology. Many names in this
document may change.

In particular, FastFed is unique in that it spans three existing specs, each with unique
terminologies. Does FastFed foist a 4th terminology on the world?

(Issue	#2)	Balancing	Ease-of-Use	with	Feature	Richness	
FastFed sets a high bar for user simplicity. Delivering this experience necessitates restrictions in
the functionality that IdPs and SPs expose. How restrictive can FastFed be without crippling
adoption of the specification? Ideally, the familiar 80/20 rule can be achieved; solving 80% of
the integrations with this simple experience.

For example, can we mandate that:

• SAML NameID must always be populated with the SCIM userName and be of type
“unspecified”. Otherwise, administrators must define a mapping, which fails the usability
goal.

• No extended attributes are allowed, because this will require end-users to define more
attribute mappings. FastFed provides a predefined list of supported SCIM schemas. (Note
– this would probably require a new blessed schema for the educational sector, to
substitute for the gaps between eduPerson and SCIM User/EnterpriseUser.)

• Key rotation specifics.
• Provisioning, if required, must use SCIM. There will be a small number of allowed

provisioning modes (e.g. JIT, PreProvisioning). Modes must be easily understandable by
non-experts in Identity.

(Issue	#3)	Attribute	Mappings	
This document proposes SCIM as the lingua franca for user attributes. However, neither SAML
nor OIDC describe how to bind SCIM attributes into the protocol.

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

One option is to define “the one true way” that all FastFed compliant systems adhere to for using
SCIM in these protocols. For example:

• http://openid.net/specs/openid-connect-scim-profile-1_0.html	
• https://www.ietf.org/mail-archive/web/scim/current/msg01141.html	

Another option is to allow service providers to define custom attribute mappings. These would
be defined once, by the SP, and reused across all integrations.

Attribute mappings could ease adoption by allowing service providers to avoid making changes
to their existing SAML/OIDC endpoints. They may continue using whatever attribute naming
scheme exist today. However, it also increases the complexity of the FastFed specification. It is
undetermined whether the benefits outweigh the complexity.

If decided to support attribute mappings, another challenge is the lack of an existing standard for
attribute mappings syntax. (Unless someone knows one?) Various providers have invented their
own syntax to fill the gap. Examples:

• https://docs.microsoft.com/en-us/azure/active-directory/active-directory-scim-
provisioning	

• https://developers.onelogin.com/scim/define-user-schema	
• https://docs.wso2.com/display/IS600/Managing+Claim+Dialects	

Many of these rely on some form of “JSON pointer” to reference a SCIM attribute within a
JSON document. There is no applicable standard for this, either. There is a JSONPointer
specification (https://tools.ietf.org/html/rfc6901) but it is not rich enough to support SCIM
multivalue attributes. There is also JSONPath which can express the richness, and is widely
adopted, but the specification consists solely of user docs on a personal blog.
(http://goessner.net/articles/JsonPath/)

(Issue	#4)	Credential	Exchange	
FastFed needs to distribute credentials to the IdP and SP so they can communicate with each
other. OAuth tokens are nice, but there is no existing OAuth grant type that aligns with the
FastFed needs. An unorthodox flow was proposed in this document. However, the security
implications of this proposal have not been examined, and there may be better approaches to
credential exchange.

(Issue	#5)	Endpoints	on	the	Public	Internet	
The flows described in this document require that an SP be able to communicate
programmatically with the IdP. For example, to load the FastFed Metadata configuration, refresh
OAuth tokens, and rotate keys.

Many installations of SAML IdPs exist in private networks with firewall restrictions. They may
not be able to call (or be called) via endpoints on the public Internet. This has not mattered in the
past because SAML relied on the user_agent as a data carrier.

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

If this is a constraint for enough potential users, it may be necessary to define a FastFed flow that
performs the registration handshake through the user_agent via HTTP POSTS, and negates the
need for public endpoints. This profile may only support a limited subset of FastFed
functionality.

(Issue	#6)	Minimal	Set	of	SAML/OIDC	functionality	to	be	compliant	
Both SAML and OIDC define a variety of capabilities that may not be necessary for the FastFed
experience. To reduce the burden on FastFed implementers, and encourage compatibility, should
FastFed define the minimum set of capabilities within these specifications that must be
implemented to be FastFed Compliant?

(Issue	#7)	Entitlements	
Some applications offer different profiles/roles that users can attain. The permissions to do so are
sometimes represented in extended attributes on the user profile, inside the Identity Provider.

Custom attributes are generally in conflict with the FastFed goals because they require an
administrator to define/configure additional data. However, the need for profile management still
exists. Can FastFed support these custom attributes without sacrificing usability?

If there is enough commonality in the representation of entitlements, it might be possible for
FastFed to define a mechanism for Service Providers to declare the set of profiles/roles that can
be attained.

However, this is a slippery slope. Authorization rules become complicated very quickly. It is
undetermined if this is possible or appropriate for FastFed to address.

(Issue	#7)	Duplicate	Registrations	
How does FastFed identify a unique registration between an IdentityProvider and a
ServiceProvider?

The answer is not clear-cut because some applications allow multiple instances. For example,
there might be “Production” and “Sandbox” instances of the same SaaS application. Or, different
departments in a company might create instances for “Sales”, “Finance”, “Vendors”, etc…

What is the mechanism by which FastFed implementers can recognize that a registration to a
given instance of an app already exists?

(Issue	#8)	Evolution	of	IdP	and	SP	configurations		
How does the relationship evolve over time? For example, perhaps the service provider wishes to
update their logo. Or, the IdP administrator wishes to switch from SAML to OIDC.

Should the IdP and SP poll the other’s FastFed Metadata files on a recurring cadence?
Alternatively, should administrators “re-register” to make changes? The use cases still need to be
enumerated and solutions proposed.

This document is for discussion purposes only, and not an Implementers Draft or Final Specification

(Issue	#9)	Other	Edge	Cases	
There are various edge cases that were not considered by this document. For example, what
happens if an administrator abandons a FastFed registration midway? Does information get
cleaned up or expired eventually? What happens if the administrator later attempts to retry the
registration? These edge cases still need to be identified and addressed.

